

University of Massachusetts, Amherst College of Engineering

ITS LIT Mid-Year Design Review Senior Design Project '17

Department of Electrical and Computer Engineering



Meet The Team



Advisor: **Professor David** McLaughlin

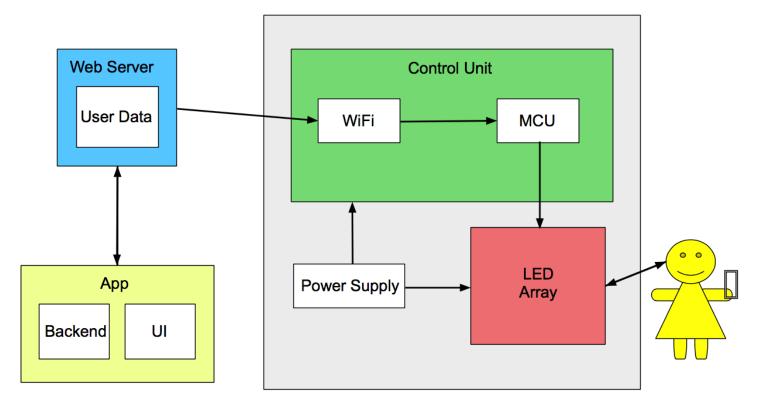
Emma Bryce EE

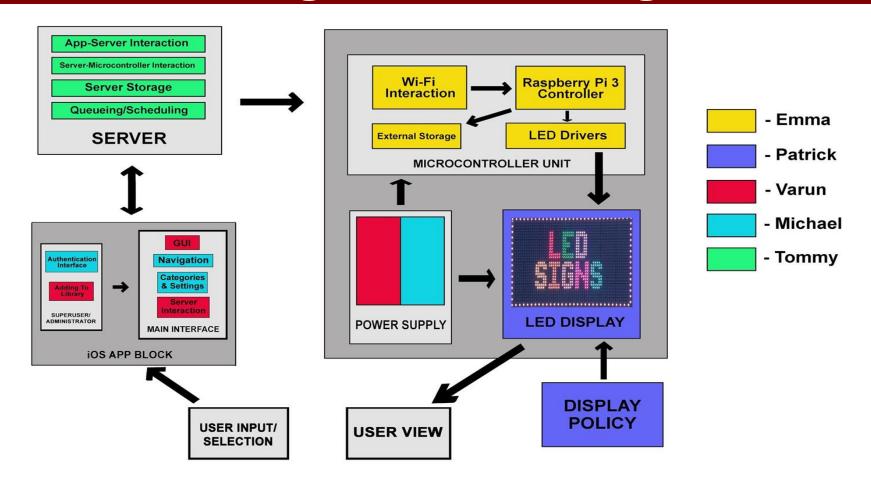
Tommy Zhen CSE

Michael Polin CSE

EE

Patrick Browne Varun Menon EE


ITS LIT


Top Level Requirements

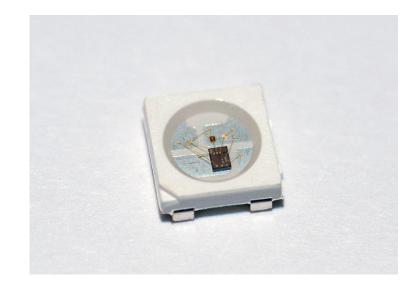
- Visible by many people simultaneously (~100's)
 - Visibility out to 10's of meters at night (stretch goal 60m)
 - Show a selection of ~10 images (stretch goal 30)
- Short-term deployment on a UMass structure
 - Inside installation
- Users able to update the display via handheld app
- Overall power consumption of < 300 watts
 - Plug into AC

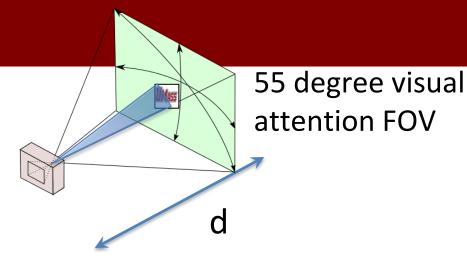
Previous Block Diagram

Redesigned Block Diagram

LED Display

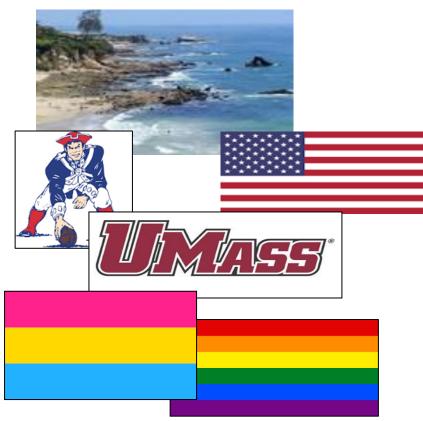
Requirements:


- Refresh rate on display can support changing of images


MDR Deliverables:

- Create temporary sample display array of LEDs on a board
- Interact with microcontroller

LED Display


- Alternatives: HDTV Screen, Projector, and custom LED PCB
- Custom PCB will house RGB LEDS
 - 1m x 1m display
 - 30mm Pitch
 - 1000 LED Pixels
- Optimal Viewing distance 10m-30m for low contrast imagery
- WS2812 chosen as RGB LEDS

- Human cone of visual attention is ~ 55 degrees wide
- Linear field of view (FOV) at distance d:
 - FOV = 2*tan(27.5)*d = 1.04 d ~ d meters
- What fraction of the FOV is illuminated by the 1 meter display?
 - 1/3 FOV @ d=3 m range
 - 1/10 @ d=10 m range
 - 1/60 FOV @ d=60 m range

Original 400x180 pixels

Resampled 30x30 pixels

Visibility at 3 meters

Visibility at 10 meters

Å

Microcontroller and Peripherals

Requirements:

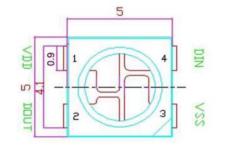
- Still images
- Accepts and crops generic image files from server via WiFi to correct aspect ratio
- Downsamples to fit number of pixels in display
- Hexadecimal to RGB conversion
- Outputs serial neopixel protocol
- Refresh picture in ~seconds

Microcontroller and Peripherals

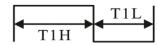
Implementation alternatives:

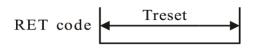
-Raspberry Pi, Beaglebone, or similar
-Raspberry Pi chosen due to availability of drivers for ws2812b neopixels

-Arduino being used in test and development stage

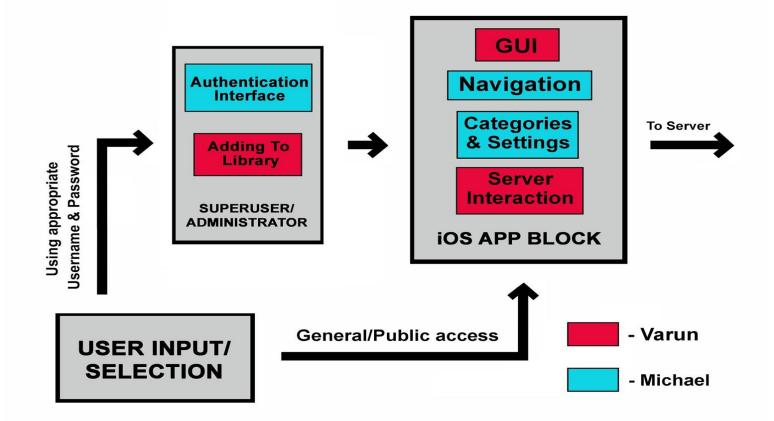

Microcontroller

MDR Deliverables:


- Microcontroller drives sample display


Accomplished:

- Microcontroller drives sample display (6 LEDs) 1 code
- Arduino used for proof of concept
- Neopixel communication protocol fulfilled

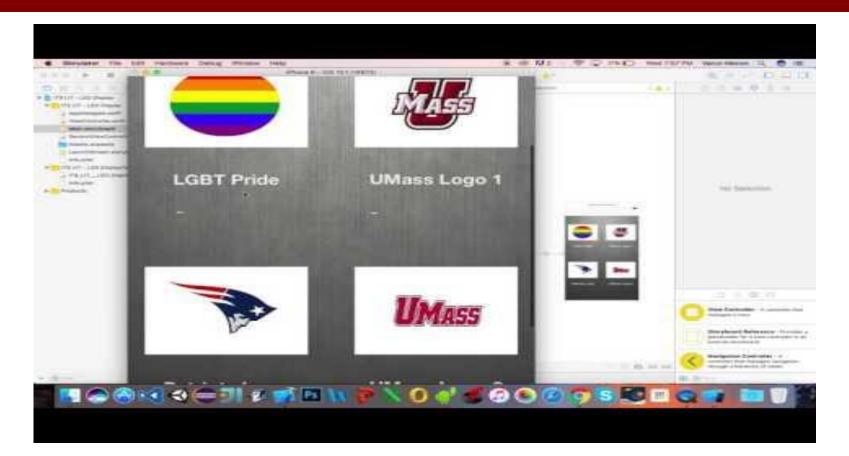


System Requirements:

- An easy-to-navigate app interface where users can pick an image to be displayed on the LED display panel
- Users can choose from a catalogue of preset images
- App receives user input and transmits data to the server (real time communication)
- Superuser/administrator
 - Authentication (username/password)
 - Privileges (uploading new images, creating new categories etc.)

App - Block Diagram

App - MDR Deliverables


Deliverables:

- Basic app GUI, layout and navigation
- User input tested

Accomplished:

- Home screen and sample preset images (basic graphics and navigation)
- User clicks tested

App - Demo

App - Superuser/Administrator

Authentication:

- Single superuser account with unique username and password
- Login credentials will be encrypted and decrypted

Privileges:

- Ability for superuser to create new categories
- Ability for superuser to add and delete images from new and/or existing categories
- App will add new images to the local library as well as the server library

App - Interface & Server Interaction

App Interface:

- Categories will be decided in accordance with display policy
- Scroll view for categories
- Presets will be sampled before being added to library

Server Interaction:

- App makes HTTP requests to web server and parses the response
- RestKit for iOS: Framework that integrates with core data and a simple set of networking primitives for mapping HTTP requests and responses

App - Location Access

- Not a driving requirement
- This approach may be used as an alternative to a Wi-Fi fence/perimeter
- App asks user for location access while running
- Location of LED display panel hardcoded into app
- Checks proximity between user and display, and decides whether to send request or not (Eg. proximity perimeter of 120 ft.)

Requirements

- Act as storage between app and microcontroller
- Queueing for multiple requests
- Response time (~5 seconds)

MDR Deliverables:

- Server is created and set up
- Microcontroller interaction tested

Apache

- HTTP server (TCP/IP protocol)
- Hosted on laptop and accessed through IP address
- Alternatives
- Host on cloud (Amazon Web Services, Microsoft Azure)

Demonstrate:

- Apache web server created and hosted
- Microcontroller can access and download server files

Server Demo

Display Policy

Requirements:

- Implement display policy

MDR Deliverable:

- Begin vetting with school or faculty member

Accomplished:

- Started a dialogue with Professor Carolina Aragon from landscape Architecture

Proposed CDR/FPR Deliverables

PJ

- PCB design & display policy complete for CDR Feb
- Display complete for FPR April

Tommy

- Server and app transmit/receive data for CDR Feb
- Server and microcontroller full functionality and queuing for FPR April

Emma

- Raspberry Pi computer controls a 2-dimensional display for CDR and renders at least one image type from server Feb
- Able to render downsampled images of different file types for FPR April **Mike**
 - Multiple views for categories/settings complete for CDR Feb
 - Power supply & superuser authentication process complete for FPR April

Varun

- App is able to send, receive requests and interact with server for CDR Feb
- Power supply & superuser privileges complete for FPR April

Questions?

